Performance Prediction for Black-Box Components Using Reengineered Parametric Behaviour Models

نویسندگان

  • Michael Kuperberg
  • Klaus Krogmann
  • Ralf H. Reussner
چکیده

In component-based software engineering, the response time of an entire application is often predicted from the execution durations of individual component services. However, these execution durations are specific for an execution platform (i.e. its resources such as CPU) and for a usage profile. Reusing an existing component on different execution platforms up to now required repeated measurements of the concerned components for each relevant combination of execution platform and usage profile, leading to high effort. This paper presents a novel integrated approach that overcomes these limitations by reconstructing behaviour models with platform-independent resource demands of bytecode components. The reconstructed models are parameterised over input parameter values. Using platform-specific results of bytecode benchmarking, our approach is able to translate the platform-independent resource demands into predictions for execution durations on a certain platform. We validate our approach by predicting the performance of a file sharing application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverse Engineering of Parametric Behavioural Service Performance Models from Black-Box Components

Integrating heterogeneous software systems becomes increasingly important. It requires combining existing components to form new applications. Such new applications are required to satisfy non-functional properties, such as performance. Design-time performance prediction of new applications built from existing components helps to compare design decisions before actually implementing them to the...

متن کامل

Identification of semi-parametric hybrid process models

Hybrid models are mathematical models that comprise both mechanistic and black-box or datadriven components. Typically, the parameters in the mechanistic part of a hybrid model (if any) are assumed to be known. However in this research, a two-level approach is proposed for the identification of hybrid models where some parameters in the mechanistic part of the model are unknown. At the first le...

متن کامل

Improving the expressiveness of black-box models for predicting student performance

Early prediction systems of student performance can be very useful to guide student learning. For a prediction model to be really useful as an effective aid for learning, it must provide tools to adequately interpret progress, to detect trends and behaviour patterns and to identify the causes of learning problems. White-box and black-box techniques have been described in literature to implement...

متن کامل

Prediction of Software Performance Using Genetic Programming

Performance is a non-functional requirement for a software product. It is related to reliability, security and other non-functional requirements. Various approaches are available for software performance prediction. In this paper we present a novel method of using Genetic Programming in reverse engineering concept. Reverse Engineering is the process of analyzing software product with the aim of...

متن کامل

Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008